Function to compute lower and upper confidence intervals on the spectrum Usage: Serr=specerr(S,J,err,trialave,numsp) Outputs: Serr (Serr(1,...) - lower confidence level, Serr(2,...) upper confidence level) Inputs: S - spectrum J - tapered fourier transforms err - [errtype p] (errtype=1 - asymptotic estimates; errchk=2 - Jackknife estimates; p - p value for error estimates) trialave - 0: no averaging over trials/channels 1 : perform trial averaging numsp - number of spikes in each channel. specify only when finite size correction required (and of course, only for point process data) Outputs: Serr - error estimates. Only for err(1)>=1. If err=[1 p] or [2 p] Serr(...,1) and Serr(...,2) contain the lower and upper error bars with the specified method.
0001 function Serr=specerr(S,J,err,trialave,numsp) 0002 % Function to compute lower and upper confidence intervals on the spectrum 0003 % Usage: Serr=specerr(S,J,err,trialave,numsp) 0004 % Outputs: Serr (Serr(1,...) - lower confidence level, Serr(2,...) upper confidence level) 0005 % 0006 % Inputs: 0007 % S - spectrum 0008 % J - tapered fourier transforms 0009 % err - [errtype p] (errtype=1 - asymptotic estimates; errchk=2 - Jackknife estimates; 0010 % p - p value for error estimates) 0011 % trialave - 0: no averaging over trials/channels 0012 % 1 : perform trial averaging 0013 % numsp - number of spikes in each channel. specify only when finite 0014 % size correction required (and of course, only for point 0015 % process data) 0016 % 0017 % Outputs: 0018 % Serr - error estimates. Only for err(1)>=1. If err=[1 p] or [2 p] Serr(...,1) and Serr(...,2) 0019 % contain the lower and upper error bars with the specified method. 0020 if nargin < 4; error('Need at least 4 input arguments'); end; 0021 if err(1)==0; error('Need err=[1 p] or [2 p] for error bar calculation. Make sure you are not asking for the output of Serr'); end; 0022 [nf,K,C]=size(J); 0023 errchk=err(1); 0024 p=err(2); 0025 pp=1-p/2; 0026 qq=1-pp; 0027 0028 if trialave 0029 dim=K*C; 0030 C=1; 0031 dof=2*dim; 0032 if nargin==5; dof = fix(1/(1/dof + 1/(2*sum(numsp)))); end 0033 J=reshape(J,nf,dim); 0034 else 0035 dim=K; 0036 dof=2*dim*ones(1,C); 0037 for ch=1:C; 0038 if nargin==5; dof(ch) = fix(1/(1/dof + 1/(2*numsp(ch)))); end 0039 end; 0040 end; 0041 Serr=zeros(2,nf,C); 0042 if errchk==1; 0043 Qp=chi2inv(pp,dof); 0044 Qq=chi2inv(qq,dof); 0045 Serr(1,:,:)=dof(ones(nf,1),:).*S./Qp(ones(nf,1),:); 0046 Serr(2,:,:)=dof(ones(nf,1),:).*S./Qq(ones(nf,1),:); 0047 elseif errchk==2; 0048 tcrit=tinv(pp,dim-1); 0049 for k=1:dim; 0050 indices=setdiff(1:dim,k); 0051 Jjk=J(:,indices,:); % 1-drop projection 0052 eJjk=squeeze(sum(Jjk.*conj(Jjk),2)); 0053 Sjk(k,:,:)=eJjk/(dim-1); % 1-drop spectrum 0054 end; 0055 sigma=sqrt(dim-1)*squeeze(std(log(Sjk),1,1)); if C==1; sigma=sigma'; end; 0056 conf=repmat(tcrit,nf,C).*sigma; 0057 conf=squeeze(conf); 0058 Serr(1,:,:)=S.*exp(-conf); Serr(2,:,:)=S.*exp(conf); 0059 end; 0060 Serr=squeeze(Serr);