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Overview of morning talks and tutorial

® This talk: A tutorial overview of signal
processing methods for neural data

= Next talk: Data examples pertaining to
tutorial talk

® Tutorials: Analysis of individual data
sets to illustrate the methods
discussed in the two talks




Overview of this talk

Quantifying auto and cross-correlations in time
series using spectral measures

Basic concepts: Sampling theorem, Nyquist
frequency, DFT, FFT

Time frequency resolution and the spectral
concentration problem

Multitaper spectral estimation

Different methods for specifying point processes:;
point process spectra

Singular value decompositions




Time domain correlation functions are
popular in neuroscience to characterize
correlations between neurons ...
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Daniel Y. Ts'o, Charles D. Gilbert, and Torsten N. Wiesel

The Journal of Neuroscience
April 1986, 6(4); 1160-1170

These can capture sharply
peaked correlations ..

.. But have difficulty detecting
correlations distributed over
time, such as those caused by
quasi-periodic oscillations in the
data

Also note:
(a) no confidence limits

(b) difficulties in quantifying
the "strength” of the
correlations, or pooling across
neurons, for anything but the




Real time
spectrogram

" Characterization of
temporal
correlation
patterns in neural
signals using time
dependent spectra

Shows changes with
state of arousal and
finer cognitive
modulations




Spike—field coherency
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Time domain correlations show a peak at zero time lag, but an oscillatory part
remains within the confidence intervals,

These oscillations appear to be significant on visual inspection, and in fact they
do give rise to significant coherence in the time-frequency plane.




Let us look at some voltage waveforms (actual LFP recordings)...
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The variance is constant across time
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At any given time, the voltages .. but nearby time points are
have a distribution, with a mean correlated!
and a variance ..
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X(t)

In the time basis, correlations
between different points are nonzero ..

C(t)=cov[X(t+1"),X(1t)] is nonzero

(assume the mean E[X(1)] has been
subtracted)

Q. Can one go to a basis where the correlations are zero?

A. Yes! One can "rotate” the basis, and make the pair wise correlations
vanish. For a stationary process, this is achieved by going to the

frequency domain.

Cov[X(f),X(f)] = O unless

f=f




Var[X(1)]
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®  For non-white processes, correlations between two time points C(t) is
in general nonzero. Most processes of interest are not white.

" For stationary processes, correlations between two unequal frequencies
is zero. Many processes of interest may be modeled as locally
stationary.




The continuous Fourier transform ...

X(f) =fx(t)e‘2“iﬁdt

The autocorrelation function and the spectrum
are related by Fourier transformation
Ct)=<x(t+t")x(t")>—-<x(t+1t")><x(t") >

<X(f) X(f)>=SUR -1

S(f) = f C(t)e ™ dt




Sampling theorem, Nyquist Frequency,
and all that ...

® Q. When can a continuous
. — signal be fully characterized

/ //bszweﬁ‘z"rlme samples?

® A Under two conditions:

® (a) It is bandlimited (the
spectrum is zero outside a
finite interval [-fy, , fy 1)

" (b) The sampling frequency
is larger than the size of
this interval (f5 > 2fy ).
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f Approximately bandlimited at this frequency (note log scale)




Sampling theorem tells us how to reconstruct
the continuous time process from discrete
time samples!

x(t) = E x, sin c[2nf,, (t — nAt)]
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Estimating spectra from data: tricky
business

® The statistical theory of estimating
spectra robustly from small samples

poses hontrivial challenges.

® Blindly hitting the "FFT button” will not
in general yield good results.

m Key problem: Time-Frequency
uncertainty




FFT and DFT

The Discrete Fourier Transform is a continuous function of frequency
obtained by transforming a discrete-time series

T/2

X(f)= Y x(t)e™™

//// t=—T112

f here is continuous, and t is discrete (t=...,0,At,2At,.. nAt,...)

The FFT is a fast algorithm to evaluate the DFT on a discrete frequency grid.

The resolution of the frequency grid is set by the amount of zero-padding
used when evaluating the FFT.




DFT and FFT

® DFT (function of

continuous
frequency)

" m FFT evaluated

without padding

—>

® FFT evaluated after

padding by a factor
of 2




Frequency resolution:
The spectral concentration problem

If we had a discrete time series for infinite time, we would be able to
evaluate its Fourier transform X(f) where

X(1)= S xe™”

However, we only get finite segments of data (and if the process is
nonstationary, then we may have to estimate spectra with even smaller
segments). Therefore, we can only evaluate the truncated DFT X(f)

17/2

Xo(f) = 3 x(e™




Dirichlet Kernel: Fourier transform or a
rectangular window

It can be shown that X(f) is equal to X(f) convolved with ("smeared
by") the Dirichlet kernel

The Dirichlet kernel is the Fourier transform of a rectangular window.

1/(2A¢)

X, ()= [Dr(f = /)X

_1/(2A¢)
sin(mfT)
sin(stf )

DT(f)=




Narrowband and broadband bias

= Two problems caused by

L) the finite window:

| __—= (a) central lobe has
finite width, Af=2/T
("narrowband bias")

s

soo @ (b) Large side lobes:
height of first side lobe
f (units of 1/T) is 20% of central lobe
("broadband bias").




“Tapering” the data with a smooth function
(hanning, hamming, etc) reduces the sidelobe
height, at the expense of the central lobe
width ... but:

oldelope suppression using a data taper " . "
: . " Are there "optimal

= Rectangular Taper‘S?

== Hanning

10

Tapering causes us to
down-weight the
edges of the data
window (we lose data).
Is there a way of
recovering this
information?
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These questions are
elegantly answered

Freauencv in Raleiah units




First, we consider the

Spectral Concentration Problem:

Find strictly time localised functions w, , 1=1..T,

Whose Fourier Transforms are maximally localised
on a frequency interval [-W,W1.

This gives a basis set (Slepian functions) used for
Spectral estimation on finite time segments




Find functions w, whose Fourier Transform U(f)

T
U(f)= 3 we™
t=1

Are maximally concentrated in the frequency
interval [-W,W]. To do this, maximise A given by

w

[IUNT dr
7¥ A

NIUCHP df

-1/2




Maximising the spectral concentration ratio gives rise
to an eigenvalue equation for a symmetric matrix

3 S ) = vt

-Eigenvectors = Slepian functions
*Orthonormal on [-1/2,1/2] and orthogonal on [-W,W]

*K=2WT Eigenvalues are close to 1 (rest close to 0),
Corresponding to 2WT functions concentrated

within [-W W]




First 10 eigenvalues for 2WT=6
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A is the power of the k™ Slepian
function within the bandwidth [-W , W]
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Approximately 2WT Slepian functions
fit on this Time-Frequency ftile. Since

T, W are input parameters, we can easily
control the resolution element in the
Time Frequency plane using Slepians.




First 3 Slepians (2WT=6)  Corresponding
Fourier power




Slepian functions provide a systematic tradeoff
Between narrowband bias (central lobe width)
And broadband bias (sidelobe height)

— R-ectangular
— W T=3
— W T=4




Using multiple tapers recovers the edges of the
time window (note the almost rectangular shape
of the effective time-weighting function)
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Multitaper Spectral Estimation:

K

_ 1
Sur = 7 Y ller( )

K
k
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where
N

i f) = Z wi(k)zpe 2wt
t=1

and wy (k) K are Slepian functions.
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Cross Spectra and Cross Coherences between pairs of time
series may be estimated in an analogous manner:

K

_ 1
Sxy (f) = % > i (Fur(f)

k=1

_ Sxy (f)
VSxx (f)Syy (f)

Cxy(f)




An example: Comparing spike-LFP coherence between two
conditions. Multitaper estimates with a large bandwidth
compared with a narrowband estimate. Local confidence limits
are indicated.
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Smoothed estimates: Less smoothing:
Confidence bands separated ~ Confidence bands overlap




Spectral Analysis for Point Processes




Different ways of specifying Point
Processes

® The Configuration Probability (the joint
distribution of all points)

® The Conditional Intensity (the
probability of finding a point at a given
time, conditioned on the past history)

m By specifying Moments of the process
(or correlation functions)




(1)Specification in ferms of Configuration Probability:

For all n, specify the joint probability of occurrence
of all points, P(11, t2, .., tn; n)=P(t1,12,...tn|n)p(n)

P(—o—o—o—o—)

Note: This configuration probability has to be given
jointly for all n.




Example: Poisson Process

P(t,,t,,..,t |n)=

Tl’l
AT s
7!

p(n) =

Note: In this example, choosing p(n) to be other
than the Poisson distribution would result in a
non-Poisson process (An example of an application to
spike trains: Richmond and Wiener, 2003)




(2) Specification in ferms of Conditional Intensities:

Probability of occurrence of a point at a given time,
given the past history of the process

M|t L.t ;0)

— oo —

Given these .. Adt is the probability
that a point occurs in
the interval (1,t+dt)




For a Poisson process, the conditional intensity is a
constant.

More generally, it is a random variable that depends
on the sample of the point process.

Examples of applications to spike trains:
Brillinger et al, Brown et al.




(3) Specification in terms of moments of the process

(analogous to specifying a univariate PDF in terms of the
moments E(x), E(x?), E(x3), ..., E(xM), ..)

The moments can be defined analogously to continuous
processes:

(0= "o(-1)

First moment =<n(¢) >

Second moment =<n (¢, M (¢,) >
...n" moment =< (£, N (z,)..n(¢,) >




Delta function at +=0

Second moment of
a point process

<nmn,) >

Goes to nonzero
value as t->o0




Product density: subtract the delta function

Note: this is sometimes

inaccurately called the

correlation function. Goes to nonzero
value as t->o0

p(4,t,) =< M) >—-<n(f)>0(t —1,)
Stationarity = p(t,,t,) = p(t, - t,)




Correlation function: subtract the asymptotic value

Goes to zero
as t-»>oo

C(t,t) =< n(,) >-<n() ><n(t,) >
Stationarity = C(t,,t,) =C(t, - t,)




The spectrum is given by the Fourier transform
of the correlation function (as for the continuous
process)

S(f) = f dtC(t)e ™




As f->0, S(f)->R (the rate of the process)

lim S(f) = R = lim —2d) >

f® T® T

As f->0, S(f) is given by the “"Fano factor”

& = F =1lim
S() re= E(N(T))

VIN(T))




Example: For a Poisson process

Second moment: <M (t, M(z,) >=AS (¢, —=1,) + N\
Two - point density : 0(t) =N\
Correlation function : C(t)=N0(?)

Spectrum : S(f) = f di\d (1)e™ =\

The spectrum is flat - the Poisson process is
the point process analog of white noise.




Ruling out classes of processes:

Rate Modulated Poisson: S(f,t) = R(t). Therefore, if S(f.t)
shows frequency dependence then one can rule out a rate
modulated Poisson.
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Doubly Stochastic Poisson: S(f) > A = S(o). If the spectrum
is anywhere less than its asymptotic value, doubly stochastic
Poisson can be ruled out.

SU Spectrum
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Interval spectrum: Spectrum of the process constructed
by taking successive Inter Spike Intervals (ISIs)

At,
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3 Estimate spectrum
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Renewal Process: since successive intervals are uncorrelated,
the ‘interval spectrum’, ie the spectrum of the ISI process, is
white. Renewal processes can be ruled out if the interval
spectrum departs from a constant (or equivalently, successive
ISIs are correlated).

Interval Spectra
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Association between processes can be measured using the
cross-coherence as for continuous processes

Sy (f)
V82 (£)Sy(f)

The zero frequency coherence gives the number covariation.

C:fry (f) —

couv(N;, N;)
VVI(N;)V(N;)

Ci;(0) =




Some benefits of spectral measures:

*Unified framework for continuous and point processes

*Pooling across pairs easier (cf. Coherence magnitude)

*Smoothing in frequency reduces estimation variance
- Time-frequency methods account for nonstationarity
‘Physiologically distinct sources often separate into

distinct frequency bands, thus providing a natural
method to separate 'signal’ and 'noise’.




A variant on Spectral Analysis: Singular Value Decomposition.




Spectral Analysis <= Factorisation of the temporal correlation
matrix for single channels.

For multichannel data (EEG, MEG, fMRI), the SVD of the
(channels x time) data matrix corresponds to a factorisation of
the instantaneous correlation matrix.




All matrices (including rectangular ones) have a Singular Value
Decomposition,

M =VAU'

Where V' and U are unitary matrices and A is a diagonal
matrix with non-negative entries called singular values. The

columns of V' and U are called left and right singular vectors,
and satisfy the equation

Z ﬂfﬁ. Us; = )\'U?'_

J




Counting: For a rectangular p x ¢ matrix M, with p > ¢. there
are at most ¢ nonzero singular values.

APX9 — VP aNaXaTTTaxq

For example, for image time series I (x,t),

I(wt) =Y Aaln(x)an(t)

Here n is given by the smaller of (number of channels or voxels)
and (number of time points). The quantities I,,(x) and a,(f)
are called the spatial modes and temporal modes, or spatial
singular vectors and temporal singular vectors.




The SVD is useful to analyvse multichannel time series
(including image time series) since in general, the singular value
spectrum (a plot of the sorted singular values) shows a sharp
rolloff, separating a ‘signal subspace’ from a ‘noise subspace’.
The ‘noise tail” in the singular value spectrum can be
analytically estimated for additive uncorrelated noise.
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In general, individual modes have no physical or
physiological meaning, except accidentally, and should
not be selected by hand or ascribed such meaning. This
is true for other decomposition algorithms including
blind decomposition methods.

The exceptional case where a single mode can be interpreted is
when there is only one large singular value above the noise
background. This often happens when dealing with a narrow

frequency band.




Time domain SVD modes do not in general segregate
physiologically distinct sources. This can be rectified by
confining the SVD to a narrow frequency band.
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SVDs are

» Useful in determining the correlation structure of the
signals and the dimensionality of signal space.

A data reduction or compression technique.

An intermediate step useful for data conditioning and noise
removal.

A robust numerical algorithm available in MATLAB and
other high performance numerical software.




The Chronux project

http://chronux.org

Is an open source software project that aims to make high
quality signal processing tools for neurobiological data
widely available.

Current release includes a MATLAB toolbox containing a suite
of time series analysis routines (includes time-frequency
spectrum and coherence estimates for both continuous and
point processes, local regression and local likelyhood estimates,
confidence bands for estimates). There are also a number of
GUls included in the current release.

Collaborative development is encouraged, and feedback is
welcome.




