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Overview of morning talks and tutorial

 This talk: A tutorial overview of signal 
processing methods for neural data

 Next talk: Data examples pertaining to 
tutorial talk

 Tutorials: Analysis of individual data 
sets to illustrate the methods 
discussed in the two talks
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Overview of this talk

 Quantifying auto and cross-correlations in time 
series using spectral measures

 Basic concepts: Sampling theorem, Nyquist 
frequency, DFT, FFT

 Time frequency resolution and the spectral 
concentration problem

 Multitaper spectral estimation
 Different methods for specifying point processes; 

point process spectra
 Singular value decompositions
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Time domain correlation functions are 
popular in neuroscience to characterize 
correlations between neurons …

 These can capture sharply 
peaked correlations ..

 .. But have difficulty detecting 
correlations distributed over 
time, such as those caused by 
quasi-periodic oscillations in the 
data

 Also note: 
 (a) no confidence limits 
 (b) difficulties in quantifying 

the “strength” of the 
correlations, or pooling across 
neurons, for anything but the 
central peak. 
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 Characterization of 
temporal 
correlation 
patterns in neural 
signals using time 
dependent spectra

 Shows changes with 
state of arousal and 
finer cognitive 
modulations

Real time 
spectrogram
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Time domain correlations show a peak at zero time lag, but an oscillatory part 
remains within the confidence intervals.

These oscillations appear to be significant on visual inspection, and in fact they
do give rise to significant coherence in the time-frequency plane. 
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Let us look at some voltage waveforms (actual LFP recordings)…

At any given time, the voltages
have a distribution, with a mean 
and a variance ..

The variance is constant across time

… but nearby time points are 
correlated!

V(t)

t
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In the time basis, correlations
between different points are nonzero ..

C(t)=cov[X(t+t’),X(t’)] is nonzero

(assume the mean E[X(t)] has been
subtracted)

Q.  Can one go to a basis where the correlations are zero?

A. Yes! One can “rotate” the basis, and make the pair wise correlations 
vanish. For a stationary process, this is achieved by going to the 
frequency domain.  

Cov[X(f),X(f’)] = 0 unless 
f=f’

X(t)

X(t’)



NIM
H

Chronux

 For non-white processes, correlations between two time points C(t) is 
in general nonzero. Most processes of interest are not white.

 For stationary processes, correlations between two unequal frequencies 
is zero. Many processes of interest may be modeled as locally 
stationary.

 The variance at each frequency is given by the power spectrum S(f)

X(t’)

X(t)

X(f’)

X(f) f

Var[X(f)] = S(f)

t

Var[X(t)]
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The continuous Fourier transform …

The autocorrelation function and the spectrum 
are related by Fourier transformation
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Sampling theorem, Nyquist Frequency, 
and all that …

 Q. When can a continuous 
signal be fully characterized 
by discrete time samples?

 A. Under two conditions: 
 (a) It is bandlimited (the 

spectrum is zero outside a 
finite interval [-fN ,, fN ])

 (b) The sampling frequency 
is larger than the size of 
this interval (fS > 2fN ). 

 fN is called the Nyquist 
frequency.

Approximately bandlimited at this frequency (note log scale)

≈fN

X(t)

t

SX

(f)

f
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Sampling theorem tells us how to reconstruct 
the continuous time process from discrete 
time samples!

t

sinc
(t)X(t)

t
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Estimating spectra from data: tricky 
business

 The statistical theory of estimating 
spectra robustly from small samples 
poses nontrivial challenges.

 Blindly hitting the “FFT button” will not 
in general yield good results.

 Key problem: Time-Frequency 
uncertainty
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FFT and DFT
The Discrete Fourier Transform is a continuous function of frequency
obtained by transforming a discrete-time series  

f here is continuous, and t is discrete (t=…,0,Δt,2Δt,..,nΔt,…)

The FFT is a fast algorithm to evaluate the DFT on a discrete frequency grid.

The resolution of the frequency grid is set by the amount of zero-padding 
used when evaluating the FFT.
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DFT and FFT

 DFT (function of 
continuous 
frequency)

 FFT evaluated 
without padding

 FFT evaluated after 
padding by a factor 
of 2

f

|X(f)|
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Frequency resolution: 
The spectral concentration problem

If we had a discrete time series for infinite time, we would be able to 
evaluate its Fourier transform X(f) where 

However, we only get finite segments of data (and if the process is 
nonstationary, then we may have to estimate spectra with even smaller
segments). Therefore, we can only evaluate the truncated DFT XT(f)
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Dirichlet Kernel: Fourier transform or a 
rectangular window

It can be shown that XT(f) is equal to X(f) convolved with (“smeared 
by”) the Dirichlet kernel 

The Dirichlet kernel is the Fourier transform of a rectangular window.
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Narrowband and broadband bias

 Two problems caused by 
the finite window:

 (a) central lobe has 
finite width, Δf=2/T 
(“narrowband bias”)

 (b) Large side lobes: 
height of first side lobe 
is 20% of central lobe 
(“broadband bias”).

f (units of 1/T)

|D(f)|
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“Tapering” the data with a smooth function 
(hanning, hamming, etc) reduces the sidelobe 
height, at the expense of the central lobe 
width … but:

 Are there “optimal” 
tapers?

 Tapering causes us to 
down-weight the 
edges of the data 
window (we lose data). 
Is there a way of 
recovering this 
information?

 These questions are 
elegantly answered 
within the framework 
of multi-taper 
spectral estimation 
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First, we consider the 

Spectral Concentration Problem: 

Find strictly time localised functions wt , t=1..T,
Whose Fourier Transforms are maximally localised
on a frequency interval [-W,W].

This gives a basis set (Slepian functions) used for 
Spectral estimation on finite time segments
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Find functions   wt   whose Fourier Transform  U(f)

Are maximally concentrated in the frequency 
interval [-W,W]. To do this, maximise λ given by
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Maximising the spectral concentration ratio gives rise
to an eigenvalue equation for a symmetric matrix

•Eigenvectors = Slepian functions 

•Orthonormal on [-1/2,1/2] and orthogonal on [-W,W]

•K=2WT Eigenvalues are close to 1 (rest close to 0),
Corresponding to 2WT functions concentrated 
within [-W,W]
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First 10 eigenvalues for 2WT=6

λk

Λk is the power of the kth Slepian
function within the bandwidth [-W,W]
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Approximately 2WT Slepian functions 
fit on this Time-Frequency tile. Since
T, W are input parameters, we can easily
control the resolution element in the 
Time Frequency plane using Slepians.
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First 3 Slepians (2WT=6) Corresponding
Fourier power
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Slepian functions provide a systematic tradeoff
Between narrowband bias (central lobe width)
And broadband bias (sidelobe height)
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Using multiple tapers recovers the edges of the 
time window (note the almost rectangular shape 
of the effective time-weighting function)

2WT=6
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Smoothed estimates:
Confidence bands separated

Less smoothing:
Confidence bands overlap
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Spectral Analysis for Point Processes
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Different ways of specifying Point 
Processes

 The Configuration Probability (the joint 
distribution of all points)

 The Conditional Intensity (the 
probability of finding a point at a given 
time, conditioned on the past history)

 By specifying Moments of the process 
(or correlation functions)
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(1)Specification in terms of Configuration Probability:

For all n, specify the joint probability of occurrence 
of all points, P(t1, t2, .., tn; n)=P(t1,t2,..,tn|n)p(n)

P( )

Note: This configuration probability has to be given 
jointly for all n.
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Note: In this example, choosing p(n) to be other
than the Poisson distribution would result in a 
non-Poisson process (An example of an application to 
spike trains: Richmond and Wiener, 2003)

Example: Poisson Process
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(2) Specification in terms of Conditional Intensities:

Probability of occurrence of a point at a given time,
given the past history of the process

Given these .. Λdt is the probability
that a point occurs in
the interval (t,t+dt)
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For a Poisson process, the conditional intensity is a 
constant.

More generally, it is a random variable that depends
on the sample of the point process.

Examples of applications to spike trains: 
Brillinger et al, Brown et al.
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(3) Specification in terms of moments of the process
(analogous to specifying a univariate PDF in terms of the 
moments E(x), E(x2), E(x3), …, E(xn), .. )

The moments can be defined analogously to continuous
processes:
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Delta function at t=0

Goes to nonzero
value as t->∞

Second moment of 
a point process
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Product density: subtract the delta function

Goes to nonzero
value as t->∞

Note: this is sometimes
inaccurately called the 
correlation function.
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Correlation function: subtract the asymptotic value

Goes to zero
as t->∞
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The spectrum is given by the Fourier transform
of the correlation function (as for the continuous
process) 
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As f->∞, S(f)->R (the rate of the process)

As f->0, S(f) is given by the “Fano factor”
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Example: For a Poisson process

The spectrum is flat – the Poisson process is 
the point process analog of white noise.
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Interval spectrum: Spectrum of the process constructed
by taking successive Inter Spike Intervals (ISIs)

∆t1 ∆t3

∆t2

∆t1 ∆t2 ∆t3

n

∆tn

Estimate spectrum

SI

(f)
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Some benefits of spectral measures: 

•Unified framework for continuous and point processes

•Pooling across pairs easier (cf. Coherence magnitude)

•Smoothing in frequency reduces estimation variance

•Time-frequency methods account for nonstationarity

•Physiologically distinct sources often separate into 
distinct frequency bands, thus providing a natural 
method to separate ‘signal’ and ‘noise’. 



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux



NIM
H

Chronux


