Multi-taper cross-spectral matrix - another routine, this one allows for multiple trials and channels Does not do confidence intervals. Also this routine always averages over trials - binned point process Usage: [Sc,Cmat,Ctot,Cvec,Cent,f]=CrossSpecMatpb(data,win,params) Input: Note units have to be consistent. See chronux.m for more information. data (in form samples x channels x trials) win (duration of non-overlapping window) params: structure with fields tapers, pad, Fs, fpass - optional tapers : precalculated tapers from dpss or in the one of the following forms: (1) A numeric vector [TW K] where TW is the time-bandwidth product and K is the number of tapers to be used (less than or equal to 2TW-1). (2) A numeric vector [W T p] where W is the bandwidth, T is the duration of the data and p is an integer such that 2TW-p tapers are used. In this form there is no default i.e. to specify the bandwidth, you have to specify T and p as well. Note that the units of W and T have to be consistent: if W is in Hz, T must be in seconds and vice versa. Note that these units must also be consistent with the units of params.Fs: W can be in Hz if and only if params.Fs is in Hz. The default is to use form 1 with TW=3 and K=5 pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). -1 corresponds to no padding, 0 corresponds to padding to the next highest power of 2 etc. e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT to 512 points, if pad=1, we pad to 1024 points etc. Defaults to 0. Fs (sampling frequency) - optional. Default 1. fpass (frequency band to be used in the calculation in the form [fmin fmax])- optional. Default all frequencies between 0 and Fs/2 Output: Sc (cross spectral matrix frequency x channels x channels) Cmat Coherence matrix frequency x channels x channels Ctot Total coherence: SV(1)^2/sum(SV^2) (frequency) Cvec leading Eigenvector (frequency x channels) Cent A different measure of total coherence: GM/AM of SV^2s f (frequencies)
0001 function [Sc,Cmat,Ctot,Cvec,Cent,f]=CrossSpecMatpb(data,win,params) 0002 % 0003 % 0004 % Multi-taper cross-spectral matrix - another routine, this one allows for multiple trials and channels 0005 % Does not do confidence intervals. 0006 % Also this routine always averages over trials - binned point process 0007 % 0008 % Usage: 0009 % 0010 % [Sc,Cmat,Ctot,Cvec,Cent,f]=CrossSpecMatpb(data,win,params) 0011 % Input: 0012 % Note units have to be consistent. See chronux.m for more information. 0013 % data (in form samples x channels x trials) 0014 % win (duration of non-overlapping window) 0015 % params: structure with fields tapers, pad, Fs, fpass 0016 % - optional 0017 % tapers : precalculated tapers from dpss or in the one of the following 0018 % forms: 0019 % (1) A numeric vector [TW K] where TW is the 0020 % time-bandwidth product and K is the number of 0021 % tapers to be used (less than or equal to 0022 % 2TW-1). 0023 % (2) A numeric vector [W T p] where W is the 0024 % bandwidth, T is the duration of the data and p 0025 % is an integer such that 2TW-p tapers are used. In 0026 % this form there is no default i.e. to specify 0027 % the bandwidth, you have to specify T and p as 0028 % well. Note that the units of W and T have to be 0029 % consistent: if W is in Hz, T must be in seconds 0030 % and vice versa. Note that these units must also 0031 % be consistent with the units of params.Fs: W can 0032 % be in Hz if and only if params.Fs is in Hz. 0033 % The default is to use form 1 with TW=3 and K=5 0034 % 0035 % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). 0036 % -1 corresponds to no padding, 0 corresponds to padding 0037 % to the next highest power of 2 etc. 0038 % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT 0039 % to 512 points, if pad=1, we pad to 1024 points etc. 0040 % Defaults to 0. 0041 % Fs (sampling frequency) - optional. Default 1. 0042 % fpass (frequency band to be used in the calculation in the form 0043 % [fmin fmax])- optional. 0044 % Default all frequencies between 0 and Fs/2 0045 % Output: 0046 % Sc (cross spectral matrix frequency x channels x channels) 0047 % Cmat Coherence matrix frequency x channels x channels 0048 % Ctot Total coherence: SV(1)^2/sum(SV^2) (frequency) 0049 % Cvec leading Eigenvector (frequency x channels) 0050 % Cent A different measure of total coherence: GM/AM of SV^2s 0051 % f (frequencies) 0052 d=ndims(data); 0053 if d<2, error('Need multidimensional array'); end 0054 if d==2, [N,C]=size(data); end; 0055 if d==3, [N,C,Ntr]=size(data); end; 0056 if nargin < 3; params=[]; end; 0057 [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); 0058 clear err trialave params 0059 nwin=round(win*Fs); nfft=max(2^(nextpow2(nwin)+pad),nwin); 0060 [f,findx]=getfgrid(Fs,nfft,fpass); 0061 tapers=dpsschk(tapers,nwin,Fs); % check tapers 0062 Sc=zeros(length(findx),C,C); 0063 Nwins=floor(N/nwin); 0064 0065 if d==3, % If there are multiple trials 0066 for iwin=1:Nwins, 0067 for i=1:Ntr, 0068 data1=squeeze(data(1+(iwin-1)*nwin:iwin*nwin,:,i)); 0069 J1=mtfftpb(data1,tapers,nfft); 0070 J1=J1(findx,:,:); 0071 for k=1:C, 0072 for l=1:C, 0073 spec=squeeze(mean(conj(J1(:,:,k)).*J1(:,:,l),2)); 0074 Sc(:,k,l)=Sc(:,k,l)+spec; 0075 end 0076 end 0077 end 0078 end 0079 Sc=Sc/(Nwins*Ntr); 0080 end 0081 0082 if d==2, % only one trial 0083 for iwin=1:Nwins, 0084 data1=squeeze(data(1+(iwin-1)*nwin:iwin*nwin,:)); 0085 J1=mtfftpb(data1,tapers,nfft); 0086 J1=J1(findx,:,:); 0087 for k=1:C, 0088 for l=1:C, 0089 Sc(:,k,l)=Sc(:,k,l)+squeeze(mean(conj(J1(:,:,k)).*J1(:,:,l),2)); 0090 end 0091 end 0092 end 0093 Sc=Sc/Nwins; 0094 end 0095 0096 Cmat=Sc; 0097 Sdiag=zeros(length(findx),C); 0098 for k=1:C, 0099 Sdiag(:,k)=squeeze(Sc(:,k,k)); 0100 end 0101 0102 for k=1:C, 0103 for l=1:C, 0104 Cmat(:,k,l)=Sc(:,k,l)./sqrt(abs(Sdiag(:,k).*Sdiag(:,l))); 0105 end 0106 end 0107 0108 Ctot=zeros(length(findx),1); Cent=Ctot; 0109 Cvec=zeros(length(findx),C); 0110 for i=1:length(findx), 0111 [u s]=svd(squeeze(Sc(i,:,:)));s=diag(s); 0112 % Ctot(i)=s(1)/sum(s); Cent(i)=exp(mean(log(s.^2)))/mean(s.^2); 0113 Ctot(i)=s(1)/sum(s); Cent(i)=exp(mean(log(s)))/mean(s); 0114 Cvec(i,:)=transpose(u(:,1)); 0115 end 0116