Local Regression and Likelihood, Figure 6.4. Author: Catherine Loader Local smooth of CO2 dataset. Estimate the main trend, then use periodic smoothing of the residuals to estimate the annual effect. Add main trend and periodic components to get overall smooth. A periodic smooth is specified by 'style','a'. Note that year+month/12 scales the predictor to have a period of 1. The 'scale' argument to locfit() is period/(2*pi).
0001 % Local Regression and Likelihood, Figure 6.4. 0002 % Author: Catherine Loader 0003 % 0004 % Local smooth of CO2 dataset. Estimate the main trend, 0005 % then use periodic smoothing of the residuals to estimate 0006 % the annual effect. Add main trend and periodic components 0007 % to get overall smooth. 0008 % 0009 % A periodic smooth is specified by 'style','a'. 0010 % Note that year+month/12 scales the predictor to have a period 0011 % of 1. The 'scale' argument to locfit() is period/(2*pi). 0012 0013 load co2; 0014 fit1 = locfit(year+month/12,co2,'alpha',0.5,'deg',1); 0015 res = residuals(fit1); 0016 fit2 = locfit(year+month/12,res,'alpha',[0 2],'style','a','scale',1/(2*pi)); 0017 f1 = fitted(fit1); 0018 f2 = fitted(fit2); 0019 figure('Name','fig6_4: CO2 dataset local smoothing' ); 0020 plot(year+month/12,f1+f2);