Home > chronux > fly_track > FTrack > functions > fit_ellipse.m

fit_ellipse

PURPOSE ^

SYNOPSIS ^

function ellipse_t = fit_ellipse( x,y,plot_opt )

DESCRIPTION ^

 fit_ellipse - finds the best fit to an ellipse for the given set of points.

 Format:   ellipse_t = fit_ellipse( x,y,axis_handle )

 Input:    x,y         - a set of points in 2 column vectors. AT LEAST 5 points are needed !
           axis_handle - optional. a handle to an axis, at which the estimated ellipse 
                         will be drawn along with it's axes

 Output:   ellipse_t - structure that defines the best fit to an ellipse
                       a           - sub axis (radius) of the X axis of the non-tilt ellipse
                       b           - sub axis (radius) of the Y axis of the non-tilt ellipse
                       phi         - orientation in radians of the ellipse (tilt)
                       X0          - center at the X axis of the non-tilt ellipse
                       Y0          - center at the Y axis of the non-tilt ellipse
                       X0_in       - center at the X axis of the tilted ellipse
                       Y0_in       - center at the Y axis of the tilted ellipse
                       long_axis   - size of the long axis of the ellipse
                       short_axis  - size of the short axis of the ellipse
                       status      - status of detection of an ellipse

 Note:     if an ellipse was not detected (but a parabola or hyperbola), then
           an empty structure is returned

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function ellipse_t = fit_ellipse( x,y,plot_opt )
0002 %
0003 % fit_ellipse - finds the best fit to an ellipse for the given set of points.
0004 %
0005 % Format:   ellipse_t = fit_ellipse( x,y,axis_handle )
0006 %
0007 % Input:    x,y         - a set of points in 2 column vectors. AT LEAST 5 points are needed !
0008 %           axis_handle - optional. a handle to an axis, at which the estimated ellipse
0009 %                         will be drawn along with it's axes
0010 %
0011 % Output:   ellipse_t - structure that defines the best fit to an ellipse
0012 %                       a           - sub axis (radius) of the X axis of the non-tilt ellipse
0013 %                       b           - sub axis (radius) of the Y axis of the non-tilt ellipse
0014 %                       phi         - orientation in radians of the ellipse (tilt)
0015 %                       X0          - center at the X axis of the non-tilt ellipse
0016 %                       Y0          - center at the Y axis of the non-tilt ellipse
0017 %                       X0_in       - center at the X axis of the tilted ellipse
0018 %                       Y0_in       - center at the Y axis of the tilted ellipse
0019 %                       long_axis   - size of the long axis of the ellipse
0020 %                       short_axis  - size of the short axis of the ellipse
0021 %                       status      - status of detection of an ellipse
0022 %
0023 % Note:     if an ellipse was not detected (but a parabola or hyperbola), then
0024 %           an empty structure is returned
0025 
0026 % =====================================================================================
0027 %                  Ellipse Fit using Least Squares criterion
0028 % =====================================================================================
0029 % We will try to fit the best ellipse to the given measurements. the mathematical
0030 % representation of use will be the CONIC Equation of the Ellipse which is:
0031 %
0032 %    Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
0033 %
0034 % The fit-estimation method of use is the Least Squares method (without any weights)
0035 % The estimator is extracted from the following equations:
0036 %
0037 %    g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f
0038 %
0039 %    where:
0040 %       A   - is the vector of parameters to be estimated (a,b,c,d,e)
0041 %       x,y - is a single measurement
0042 %
0043 % We will define the cost function to be:
0044 %
0045 %   Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c)
0046 %            = (X*A+f_c)'*(X*A+f_c)
0047 %            = A'*X'*X*A + 2*f_c'*X*A + N*f^2
0048 %
0049 %   where:
0050 %       g_c(x_c,y_c;A) - vector function of ALL the measurements
0051 %                        each element of g_c() is g(x,y;A)
0052 %       X              - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ]
0053 %       f_c            - is actually defined as ones(length(f),1)*f
0054 %
0055 % Derivation of the Cost function with respect to the vector of parameters "A" yields:
0056 %
0057 %   A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X)
0058 %
0059 % Which yields the estimator:
0060 %
0061 %       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0062 %       |  A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X)  |
0063 %       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0064 %
0065 % (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on)
0066 %
0067 % NOW, all that is left to do is to extract the parameters from the Conic Equation.
0068 % We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1;
0069 %
0070 %    Recall the conic representation of an ellipse:
0071 %
0072 %       A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
0073 %
0074 % We will check if the ellipse has a tilt (=orientation). The orientation is present
0075 % if the coefficient of the term "x*y" is not zero. If so, we first need to remove the
0076 % tilt of the ellipse.
0077 %
0078 % If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse.
0079 % we will remove the tilt of the ellipse so as to remain with a conic representation of an
0080 % ellipse without a tilt, for which the math is more simple:
0081 %
0082 % Non tilt conic rep.:  A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0
0083 %
0084 % We will remove the orientation using the following substitution:
0085 %
0086 %   Replace x with cx+sy and y with -sx+cy such that the conic representation is:
0087 %
0088 %   A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0
0089 %
0090 %   where:      c = cos(phi)    ,   s = sin(phi)
0091 %
0092 %   and simplify...
0093 %
0094 %       x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ...
0095 %           y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0
0096 %
0097 %   The orientation is easily found by the condition of (B_new=0) which results in:
0098 %
0099 %   2A*cs +(c^2-s^2)B -2Ccs = 0  ==> phi = 1/2 * atan( b/(c-a) )
0100 %
0101 %   Now the constants   c=cos(phi)  and  s=sin(phi)  can be found, and from them
0102 %   all the other constants A`,C`,D`,E` can be found.
0103 %
0104 %   A` = A*c^2 - B*c*s + C*s^2                  D` = D*c-E*s
0105 %   B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0      E` = D*s+E*c
0106 %   C` = A*s^2 + B*c*s + C*c^2
0107 %
0108 % Next, we want the representation of the non-tilted ellipse to be as:
0109 %
0110 %       Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1
0111 %
0112 %       where:  (X0,Y0) is the center of the ellipse
0113 %               a,b     are the ellipse "radiuses" (or sub-axis)
0114 %
0115 % Using a square completion method we will define:
0116 %
0117 %       F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`)
0118 %
0119 %       Such that:    a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 )
0120 %                     c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 )
0121 %
0122 %       which yields the transformations:
0123 %
0124 %           X0  =   -D`/(2*A`)
0125 %           Y0  =   -E`/(2*C`)
0126 %           a   =   sqrt( abs( F``/A` ) )
0127 %           b   =   sqrt( abs( F``/C` ) )
0128 %
0129 % And finally we can define the remaining parameters:
0130 %
0131 %   long_axis   = 2 * max( a,b )
0132 %   short_axis  = 2 * min( a,b )
0133 %   Orientation = phi
0134 %
0135 %
0136 
0137 % initialize
0138 orientation_tolerance = 1e-3;
0139 
0140 % empty warning stack
0141 warning( '' );
0142 
0143 % prepare vectors, must be column vectors
0144 x = x(:);
0145 y = y(:);
0146 
0147 % remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
0148 mean_x = mean(x);
0149 mean_y = mean(y);
0150 x = x-mean_x;
0151 y = y-mean_y;
0152 
0153 % the estimation for the conic equation of the ellipse
0154 X = [x.^2, x.*y, y.^2, x, y ];
0155 a = sum(X)/(X'*X);
0156 
0157 % check for warnings
0158 if ~isempty( lastwarn )
0159     disp( 'stopped because of a warning regarding matrix inversion' );
0160     ellipse_t = [];
0161     return
0162 end
0163 
0164 % extract parameters from the conic equation
0165 [a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
0166 
0167 % remove the orientation from the ellipse
0168 if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
0169     
0170     orientation_rad = 1/2 * atan( b/(c-a) );
0171     cos_phi = cos( orientation_rad );
0172     sin_phi = sin( orientation_rad );
0173     [a,b,c,d,e] = deal(...
0174         a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
0175         0,...
0176         a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
0177         d*cos_phi - e*sin_phi,...
0178         d*sin_phi + e*cos_phi );
0179     [mean_x,mean_y] = deal( ...
0180         cos_phi*mean_x - sin_phi*mean_y,...
0181         sin_phi*mean_x + cos_phi*mean_y );
0182 else
0183     orientation_rad = 0;
0184     cos_phi = cos( orientation_rad );
0185     sin_phi = sin( orientation_rad );
0186 end
0187 
0188 % check if conic equation represents an ellipse
0189 test = a*c;
0190 switch (1)
0191 case (test>0),  status = '';
0192 case (test==0), status = 'Parabola found';  warning( 'fit_ellipse: Did not locate an ellipse' );
0193 case (test<0),  status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
0194 end
0195 
0196 % if we found an ellipse return it's data
0197 if (test>0)
0198     
0199     % make sure coefficients are positive as required
0200     if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
0201     
0202     % final ellipse parameters
0203     X0          = mean_x - d/2/a;
0204     Y0          = mean_y - e/2/c;
0205     F           = 1 + (d^2)/(4*a) + (e^2)/(4*c);
0206     [a,b]       = deal( sqrt( F/a ),sqrt( F/c ) );    
0207     long_axis   = 2*max(a,b);
0208     short_axis  = 2*min(a,b);
0209 
0210     % rotate the axes backwards to find the center point of the original TILTED ellipse
0211     R           = [ cos_phi sin_phi; -sin_phi cos_phi ];
0212     P_in        = R * [X0;Y0];
0213     X0_in       = P_in(1);
0214     Y0_in       = P_in(2);
0215     
0216     % pack ellipse into a structure
0217     ellipse_t = struct( ...
0218         'a',a,...
0219         'b',b,...
0220         'phi',orientation_rad,...
0221         'X0',X0,...
0222         'Y0',Y0,...
0223         'X0_in',X0_in,...
0224         'Y0_in',Y0_in,...
0225         'long_axis',long_axis,...
0226         'short_axis',short_axis,...
0227         'status','' );
0228 else
0229     % report an empty structure
0230     ellipse_t = struct( ...
0231         'a',[],...
0232         'b',[],...
0233         'phi',[],...
0234         'X0',[],...
0235         'Y0',[],...
0236         'X0_in',[],...
0237         'Y0_in',[],...
0238         'long_axis',[],...
0239         'short_axis',[],...
0240         'status',status );
0241 end
0242 
0243 % check if we need to plot an ellipse with it's axes.
0244 %if (nargin>2) & ~isempty( axis_handle ) & (test>0)
0245     
0246     % rotation matrix to rotate the axes with respect to an angle phi
0247     R = [ cos_phi sin_phi; -sin_phi cos_phi ];
0248     
0249     % the axes
0250     ver_line        = [ [X0 X0]; Y0+b*[-1 1] ];
0251     horz_line       = [ X0+a*[-1 1]; [Y0 Y0] ];
0252     new_ver_line    = R*ver_line;
0253     new_horz_line   = R*horz_line;
0254     
0255     % the ellipse
0256     theta_r         = linspace(0,2*pi);
0257     ellipse_x_r     = X0 + a*cos( theta_r );
0258     ellipse_y_r     = Y0 + b*sin( theta_r );
0259     xaligned_ellipse = [ellipse_x_r;ellipse_y_r];
0260     rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
0261     
0262     if (strcmp(plot_opt,'y'))
0263         % draw
0264         hold on
0265         plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' );
0266         drawnow
0267     end
0268     
0269     ellipse_t.xaligned_ellipse = xaligned_ellipse;
0270     ellipse_t.rotated_ellipse = rotated_ellipse;
0271     ellipse_t.ellipse_x_r = ellipse_x_r;
0272     ellipse_t.ellipse_y_r = ellipse_y_r;
0273     ellipse_t.R = R;

Generated on Fri 28-Sep-2012 12:34:30 by m2html © 2005